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Abstract
We describe a methodology for the expression of atomistic models of fluctuating interfaces as
continuum equations. We begin with formally exact Langevin equations based on the atomistic
transition rules, which are regularized to produce stochastic partial differential equations.
Subsequent coarse graining is accomplished by calculating renormalization-group (RG)
trajectories from initial conditions determined by the regularized equations. The RG analysis
shows that the morphological manifestation of a given atomistic relaxation mechanism can
depend on the length scales and timescales considered as well as on the dimensionality of the
fluctuating interface. Even complex surface processes, after a moderate degree of coarse
graining, are reduced to low-order stochastic partial differential equations. We illustrate these
ideas with a model of a growing surface under the competition between the deposition of new
material and the subsequent relaxation through surface diffusion. We conclude with an
augmentation of our differential equations with a pinning term to account for lattice effects in
the early stages of growth, where surface electron diffraction oscillations indicate layer-by-layer
growth. The calculation of submonolayer morphology, which is composed of separated
monolayer islands, provides an illustration of the efficacy of our method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many surface phenomena are macroscopic in that they are
manifested over length scales from microns to meters and
timescales from seconds to minutes. Prominent examples [1, 2]
that have fundamental interest and substantial technological
importance include corrosion, tribology, catalysis, fracture,
epitaxial growth, and biological implants [3]. From a modern
perspective, however, the underlying mechanisms of such
phenomena are due to basic atomistic processes such as
impingement, chemical reactions, and surface diffusion. The
processes may be complex, and specific atomistic models may
not always be available, but the fundamental principles are
known.

Theoretical descriptions for the physical, structural, and
chemical changes of materials caused by various types
of external driving reflect this dichotomy between the
microscopic and macroscopic points of view. The traditional
approach, which is the basis for most engineering calculations,

begins by replacing the atomic structure of matter by a
continuous mass density, with corresponding replacements
for other physical quantities. Differential equations are
then formulated from basic physical principles, such as the
conservation of energy, mass, and momentum. Continuum
elasticity [4] and fluid mechanics [5] are the best known
theories developed on this basis. At the opposite conceptual
extreme, the increasing power and accessibility of computers
over the past few decades, together with substantial algorithmic
developments, has seen the emergence of ab initio techniques
and molecular dynamics as practical large-scale simulation
methodologies [6].

As an illustration of these approaches, we consider atomic
diffusion. The simplest description of diffusion is a random
walk on a Cartesian lattice, whose coarse-grained limit for the
concentration c of mobile species is the diffusion equation,

∂c

∂ t
= D∇2c, (1)
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in which the diffusion constant D = a‖2/τ , a‖ is the
jump length (typically the lattice constant), and τ the average
jump frequency. This equation describes, for example,
the introduction of controlled amounts of dopants into
semiconductors, with vacancy diffusion being the transport
mechanism [7]. However, improved fabrication techniques
have reduced component size to the point where the diffusion
constant depends on the concentration of the mobile species,
so there are deviations from Fickian behavior [8], and an
alternative continuum formulation is required.

There is even a richer range of diffusion mechanisms on
surfaces, including, in addition to simple hopping, exchange
with substrate atoms, long jumps, and sub-surface mobility [9].
Although these mechanisms may be amenable to a description
in terms of a diffusion-type equation at a suitably coarse-
grained scale, this masks their atomistic variety. We thereby
arrive at a hierarchical view of surface diffusion, ranging from
the atomic-scale resolution of ab initio molecular dynamics,
where the Schrödinger equation is solved at each time step, to
a coarse-grained description in terms of a diffusion equation
whose atomistic ancestry resides in the parametrization of
the diffusion constant. The challenge for modern materials
physics is to seamlessly combine the atomistic and continuum
descriptions into a single adaptive simulation [10, 11].

The scenario just described is an example of the simplest
multiscale scheme, based on an unambiguous separation of
timescales. More challenging are cases where there is an
intrinsic coupling of many length scales. Turbulence is a
widely cited example of an inherently multiscale phenomenon,
in which there is an energy cascade from the microscopic to
the macroscopic modes. In the arena of materials science,
fracture also exhibits a form of energy cascade. When the
stress exceeds a critical value, atomic bonds begin to break,
elastic energy is released, and a new surface is created as
the crack propagates in the material. For brittle fracture,
atomic bonds break and the lattice appears to ‘unzip’ behind
an atomically sharp crack tip. In the case of ductile fracture,
crack propagation is accompanied by the creation of voids or
the emission of dislocations and other lattice defects. The
crack tip becomes blunt, reducing the stress concentration,
and continued crack propagation generally requires a large
input of energy. Continuous phase transitions provide another
canonical example of multiscale physics, with the divergent
correlation length at the critical point signaling the absence of
a characteristic length.

A computational framework for each of the foregoing
scenarios is provided by the renormalization group [12, 13],
and the extension of these ideas to driven fluctuating interfaces
is the main subject of this paper. We will concentrate on the
fluctuations during epitaxial growth, where a new crystalline
surface is formed as the result of deposition of new material
onto a crystalline substrate, but there are many other notable
examples that have attracted attention from the statistical
mechanics community. These include ion sputtering of
surfaces [14, 15], fracture surfaces [16, 17], burning paper [18],
sandpile models of self-organized criticality [19], penetrating
flux fronts in thin films of high-Tc superconductors [20],
and the growth of malignant tumors [21, 22]. Although

a systematic procedure for incorporating atomic degrees of
freedom into coarse-grained differential equations has yet to
be advanced, significant progress can been made if the atoms
are confined to sites on a lattice. Atomic motion is then
replaced by transitions between neighboring sites, resulting in
a ‘lattice gas’. Non-equilibrium phenomena in many settings
are modeled by lattice gases with transition rules designed
to capture the essence of atomic-scale interactions [23, 24].
Lattice gases are essentially a mesoscopic description of
processes, such as diffusion, that provides the basis for
a continuum formulation through a coarse graining and
renormalization procedure. In this sense, our approach
reduces complex surface processes to their essential continuum
expressions.

The outline of this paper is as follows. In section 2, we
describe our basic methodology for regularizing the master
equation associated with any lattice model. This yields a low-
order stochastic partial differential equation that serves as an
initial condition for a subsequent renormalization-group (RG)
analysis, which is illustrated in section 3 for a model of a
fluctuating surface during epitaxial growth. In section 4 we
describe an extension of the continuum equation derived in
section 3 to include lattice effects in the early stages of growth,
including island statistics prior to any significant coalescence,
and the periodic filling of complete atomic layers. A summary
and outlook are provided in section 5.

2. Stochastic differential equations for lattice models

2.1. The master equation

To simplify the notation and the appearance of equations, we
will describe our method for a one-dimensional system. All
of the following formalism has a straightforward extension
to higher dimensions. We consider lattice models that are
completely characterized by an array H of integer heights Hi at
each site i of an L-site lattice H ≡ {H1, H2, . . . , HL} at each
discrete time step t . The transition rates depend only on the
instantaneous height profile, rather than its history, a property
referred to as ‘Markovian’. The evolution of Markovian
lattice models is governed by the Chapman–Kolmogorov
equation [25] for the transition probability Tt+t ′(H3|H1) from
height configuration H1 to configuration H3 over the time
interval t + t ′,

Tt+t ′ (H3|H1) =
∑

H2

Tt ′(H3|H2) Tt (H2|H1), (2)

where t = t2 − t1 and t ′ = t3 − t2. The differential form of
this equation, expressed in terms of the small time limit of the
transition probability, is the master equation [25],

∂ P

∂ t
=

∑

r

[W (H−r; r)P(H−r, t)− W (H; r)P(H, t)], (3)

where P(H, t) ≡ Tt (H|H1), W (H; r) is the transition rate
from H to H + r, and r = {r1, r2, . . . , rL } is the array of jump
lengths between height configurations.

The Chapman–Kolmogorov equation (2) is the definitive
statement of the evolution of Markovian systems and is solved
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implicitly when performing computer simulations, which for
the models that we consider are kinetic Monte Carlo (KMC)
simulations. The master equation (3) is a formal restatement of
the Chapman–Kolmogorov equation in the limit of continuous
time, but with discrete height variables. Although the master
equation is more manageable than the Chapman–Kolmogorov
equation, direct solutions are available only for a few special
cases. We have developed a computational framework based
on the Kramers–Moyal–van Kampen expansion [25–29] and
implementations of limit theorems due to Kurtz [30–37] that
yield a Fokker–Planck equation, and therefrom a Langevin
equation, that embodies the statistical properties of the master
equation.

2.2. Lattice Langevin equations

The Kramers–Moyal–van Kampen expansion relies [25] on
the expansion of the first term on the right-hand side of
equation (3) in terms of the jump length r. For this purpose
we identify the ‘largeness’ parameter � governing intrinsic
fluctuations [25] as the reciprocal of the particle size or
deposition unit [27]. Transforming to the continuous height
and time variables h′

i = �−1 Hi and τ ′ = �−1 t , we obtain the
master equation,

∂ P

∂τ ′ =
∫ [

W̃
(
h′ − r; r

)
P

(
h′ − r, τ ′)

−W̃
(
h′; r

)
P

(
h′, τ ′)] dr, (4)

where the W̃ are transition rate densities for jumps rescaled
by � relative to the original lattice model which satisfy the
smoothness and small-jump conditions required for subsequent
expansions [25, 27].

The master equation (4), which is formulated in
terms of continuous time and height variables, can be
transformed [27–37] into the more analytically tractable lattice
Langevin equation,

dhi

dτ
= K (1)

i + ηi , (5)

for i = 1, 2, . . . , L, where we have restored the original scale
of the height and time variables through h′

i → hi = � h′
i and

τ ′ → τ = � τ ′, K (1)

i is the first moment of the transition rate
density, and the ηi are Gaussian noises that have zero mean and
covariances

〈ηi (τ1)η j (τ2)〉 = K (2)
i j δ(τ1 − τ2), (6)

in which K (2)
i j is the second moment of the transition rate

density. The transition moments are defined by

K (1)

i (h) =
∫

ri W (h; r) dr, (7)

K (2)
i j (h) =

∫
rir j W (h; r) dr, (8)

where W is the rescaled representation of W̃ appropriate for hi

and τ .

The Kramers–Moyal–van Kampen expansion of lattice
models [25, 27–29] has been used with great success in the
description of fluctuations in physical systems [25]. Although
this approach has several limitations [34, 35], they can
be overcome [34–37] by employing limit theorems due to
Kurtz [30–33]. The emphasis in these studies is on the
transition from the discrete jumps of size �−1 in h′ to
corresponding ‘continuous jumps’ in the limit that � →
∞. This allows the ‘control of discreteness’ [34] in the
system and, thus, provides a natural method for the passage
from discrete to continuous variables. Accordingly, beginning
with equation (4) and invoking the Kurtz theorems, one
arrives [34–37] at equation (5) as � → ∞ under rather
mild mathematical assumptions [34]. In contrast to the
Kramers–Moyal–van Kampen expansion, no assumptions are
made regarding the existence of an underlying deterministic
description nor the size of the fluctuations [34, 36, 37].

2.3. Regularized Langevin equations

The continuum Langevin equation associated with the lattice
Langevin equation (5) is obtained by first introducing the
continuous space variable x and the analytic height function
u(x, τ ) that has the Taylor expansion

h(i ± n, τ ) =
∞∑

k=0

∂ku

∂xk

∣∣∣∣
i

(±a‖ n)k

k! , (9)

where a‖ is the lateral lattice spacing. According to this
expansion, all height variables that determine the first and
second moments at site i and, hence, the lattice Langevin
equation (5) at this lattice site, are represented by u and its
derivatives evaluated there. For many lattice models, however,
height variables appear only as arguments of non-analytic
functions, such as the step function,

θd(�h) =
{

1, if �h � 0;

0, if �h < 0,
(10)

where �h is the difference between the (discrete) heights
differences at nearest-neighbor sites. For example, the number
of nearest neighbors ni at site i on a one-dimensional lattice is

ni = θd(hi−1 − hi ) + θd(hi+1 − hi ). (11)

The appearance of such non-analytic functions within
lattice Langevin equations requires a continuation for non-
integer values of the height function [27], but presents no
problems of principle. However, the regularization of these
equations necessitates the representation of the non-analytic
functions as limits of analytic functions. The regularized
lattice Langevin equation is then obtained by replacing non-
analytic functions by their analytic approximations, whereupon
Taylor expansions are carried out to obtain a stochastic partial
differential equation. The more faithful the representation
that the analytic function provides of the original function,
the greater the number of derivatives that appear in this
equation, and the more closely the solutions of the differential
equation follow those of the underlying lattice model [28, 29].
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Although this procedure is systematic, the absence of a
rigorous framework means that its validity must be assessed
on a case-by-case basis [38].

In view of the foregoing, we represent θd for continuous
arguments by

θ(�h; δ) = 1

2a

∫ a−1
⊥ �h

−∞
[erf((s + a)δ) − erf(sδ)] ds, (12)

where erf(x) is the error function, 0 < a � 1, δ > 0, and a⊥
is the perpendicular lattice spacing. The Taylor expansion of
θ around �h = 0 has an infinite radius of convergence for
any finite δ. The values of the parameters a and δ depend
on the model being studied and the spatial dimension. The
discrete step function θd is required only for integer arguments,
so a determines how this function is continued from 0 to 1
and, hence, how the rules of the lattice model are extended
to continuous heights [27, 29]. The extent of smoothing of
θd is determined by δ, with δ → ∞ providing an exact
representation,

θ(�h) = lim
δ→∞ θ(�h; δ). (13)

In practice, equation (12) is found to provide an excellent
description of the atomistic transition rules for δ � 10 [29],
while smaller values of δ produce a smoothed representation of
the lattice model. Accordingly, for finite δ, θ can be expanded
around �h = 0 as

θ(�h; δ) = A(δ; a) + B(δ; a)

a⊥
�h + C(δ; a)

a2
⊥

(�h)2 + · · · .
(14)

As noted above, the convergence of this expansion for all
finite δ means that the coefficients of (�h)n diminish with
increasing n. For many atomistic processes, this allows the
lattice Langevin equation (5) to be approximated by a finite-
order stochastic differential equation.

2.4. Stochastic partial differential equations

The substitution of equations (9) and (14) into equation (5)
produces, for small values of δ, the leading-order continuum
equation describing the fundamental properties of a given
lattice model. For lattice models of homoepitaxial growth, the
processes typically included are some combination of random
deposition, possibly followed by some form of rapid non-
thermal relaxation, and nearest-neighbor thermally activated
hopping. For such models, we find [28, 29] that the leading-
order continuum Langevin equation obtained for small δ takes
the form

∂u

∂τ
= ν2∇2u−ν4∇4u+λ13∇ (∇u)3+λ22∇2 (∇u)2+ξ, (15)

where the Gaussian noise ξ(x, τ ) has zero mean and
covariance

〈ξ(x1, τ1) ξ(x2, τ2)〉 = 2Dδ(x1 − x1)δ(τ1 − τ2), (16)

in which D = D0 − D2∇2. In writing equation (15) we have
made the transformation u → u+a⊥τ to eliminate the absolute

average height of the surface profile, so that u describes the
fluctuations about this average.

The general form of the Langevin equation (15) has
been previously postulated on the basis of symmetry
arguments [39–41] and subsumes several widely studied
continuum equations of conserved surface growth as special
cases: the Edwards–Wilkinson (EW) equation [42],

∂u

∂τ
= ν2∇2u + ξ, (17)

the Mullins–Herring (MH) equation [43, 44],

∂u

∂τ
= −ν4∇4u + ξ, (18)

the Villain–Lai–Das Sarma (VLDS) equation [39, 40],

∂u

∂τ
= −ν4∇4u + λ22∇2 (∇u)2 + ξ, (19)

and the equation

∂u

∂τ
= −ν4∇4u + λ13∇ (∇u)3 + ξ, (20)

studied in [45]. In equations (17)–(20), ν2 > 0 and ν4 > 0 to
ensure stability. Variations of the MH and the VLDS equations
are the conserved MH (cMH) equation and the conserved
VLDS (cVLDS) equation [46], for which the noise covariance,

〈ξ(x1, τ1) ξ(x2, τ2)〉 = −2 D2 ∇2 δd(x1−x2) δ(τ1−τ2), (21)

corresponds to stochastic processes that conserve the particle
number.

The justification of these equations for particular
growth scenarios typically relies on phenomenological and
scaling arguments [40, 41] to eliminate particular terms in
equation (15). Our analysis [28, 29] suggests, however,
that all terms in equation (15) generally have non-zero
coefficients for homoepitaxial growth, at least at finite length
scales and timescales. Scaling arguments can sometimes be
used to identify the dominant terms at large length scales
and timescales, but such approaches do not capture the
crossover behavior between the transient regimes and can even
sometimes lead to incorrect conclusions about the asymptotic
behavior, especially in higher spatial dimensions [28]. Hence,
the complete equation (15) must be used when making
comparisons between continuum descriptions and computer
simulations of lattice models or experiments, which access
only transient regimes. Differences in the transition rules
of lattice models of homoepitaxial growth enter through the
relative magnitudes and signs of the coefficients [28, 29] in the
leading-order equation (15). As will be discussed below, these
coefficients can have a profound effect on the transformation
of the equation under coarse graining.

3. Morphological evolution during molecular-beam
epitaxy

Epitaxial growth by molecular-beam epitaxy (MBE) is initiated
by the deposition of atoms or simple homoatomic molecules
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onto a heated substrate. The deposited atoms may undergo
an immediate short-range non-thermal mobility to dissipate
the heat of condensation. Afterward, these adatoms acquire
energy from the thermal vibrations of the substrate and hop
from site to site with possible attachment and detachment
involving other atoms, clusters, and step edges, prior to final
incorporation into the growing surface.

Most simulations of epitaxial growth are based on
KMC simulations of the solid-on-solid model [47]. The
simplest implementation of this model, with only random
deposition and activated nearest-neighbor hopping, has
been used with great effect to explain many fundamental
experimental observations, including surface diffraction
oscillations [48–50], the distributions of island sizes in
the submonolayer regime [51–53], and atomistic growth
mechanisms of GaAs(001) [54–56]. In this section, we provide
an analytic formulation of this model, study its behavior under
renormalization, and compare with KMC simulations.

3.1. Stochastic differential equation for the
deposition–diffusion model

The transition rates for random deposition and activated
hopping are, respectively,

W1(H; r) = τ−1
0

∑

i

δri ,a⊥

∏

k �=i

δrk ,0, (22)

where δi, j is the Kronecker delta, and

W2(H; r) =
∑

i j

wi jδri ,−a⊥δr j ,a⊥

∏

k �=i, j

δrk ,0, (23)

where the hopping rate and hopping rules are contained in the
wi j . For nearest-neighbor hopping with Arrhenius rates whose
energy barrier Ei is calculated from the initial environment of
the active atom, we have

wi j = 1
2ν0 e−βEi

(
δi, j−1 + δi, j+1

)
, (24)

where the attempt frequency ν0 ∼ 1012–1013 s−1 [1], β =
(kBT )−1, kB is Boltzmann’s constant, and T is the absolute
temperature of the substrate. The simplest expression for Ei

is the sum of a site-independent energy barrier ES from the
substrate and a contribution EN from each of the ni lateral
nearest neighbors: Ei = ES + ni EN. For specific materials
systems, these barriers can be determined either by fitting
to a particular experiment [49, 54] or from first-principles
calculations [55]. The total transition rate W = W1 + W2.

The procedure outlined in section 2, with δ � 0.01,
produces the leading-order stochastic differential equation for
our basic model for MBE on a two-dimensional substrate [57]:

∂u

∂τ
= −|ν4| ∇4u + λ22 ∇2 (∇u)2 + F + ξ, (25)

with

ν4 = − a4
‖

a2
⊥

DS

2d
B γ (1 − A γ )2d−1 , (26)

λ22 = − a4
‖

a3
⊥

DS

2d
γ (1 − Aγ )2d−2

[
B2γ + 2 C (1 − Aγ )

]
,

(27)
in which A ≈ 0.5, B ≈ 0.006, and C ≈ −3 × 10−7 for
δ ≈ 0.01,

γ = 1 − e−βEN , (28)

DS = a2
⊥ ν0 e−βES , (29)

the deposition flux F = a⊥/τ0, and the smoothed Gaussian
noise ξ(x, τ ) has zero mean and covariance

〈ξ(x1, t1)ξ(x2, τ2)〉 = 2Dδd(x1 − x2)δ(τ1 − τ2), (30)

with D = D0 − D2∇2, and

D0 = ad
‖

a2
⊥

2τ0
, (31)

D2 = ad+2
‖

DS

2d
(1 − A γ )2d . (32)

Our results provide a fundamental confirmation of various
phenomenological arguments [39, 40, 58] that have been used
to justify the general form of equation (25) as the equation
for epitaxial growth with random deposition and surface
diffusion. This equation has full two-dimensional rotational
symmetry, despite the original model being defined on a square
lattice. This results from the fact that our description of
surface diffusion depends on the local environment only of
the initial site. In models where the transition rates also
involve information about potential target sites (e.g. [59]), the
corresponding differential equations have mixed derivatives
that reflect the square symmetry of the lattice.

The magnitudes and signs of the coefficients ν4, λ22, D0,
and D2 are determined directly by the rules of the atomistic
model, the numerical values of the growth parameters (T and
F), and the dimensionality of the substrate. The quantities A,
B , and C that enter through the expansion in (14) depend both
on the analytic representation and on the smoothing parameter
δ. That their orders of magnitude follow the inequality
A � B � C indicates that equation (25) contains the
dominant terms of the regularized description, as can indeed be
confirmed by comparing the magnitudes of the coefficients in
equation (25) with the magnitudes of the coefficients of higher-
order terms. The combination of all of these factors allows the
systematic investigation of the interplay between deposition
and diffusion for any length scales and timescales, as will be
shown below.

3.2. Renormalization-group analysis

The multiscale analysis of the fluctuating surface described by
equation (25) is based on calculating the RG trajectories from
the initial conditions in equations (26)–(32). A previous RG
analysis [58] revealed that the noise covariance is modified to
D = D0 − D2∇2 + D4∇4 under RG transformations, where we
have that D4 = 0 in our leading-order equation (25). A non-
zero value for D4 affects the location of the fixed points, but
does not alter the values of the exponents. The coefficients in
equation (25) renormalize under the scale changes x → e�x,

5
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τ → ez �τ , and u → eα�u to one-loop order according
to [40, 58]

dν4

d�
= (z − 4) ν4 − Kd

d

Ds λ2
22 �d−4

ν2
4

, (33)

dλ22

d�
= (z − 4 + α)λ22, (34)

dD0

d�
= (z − d − 2 α) D0, (35)

dD2

d�
= (z − d − 2 α − 2) D2, (36)

dD4

d�
= (z − d − 2 α − 4) D4 + Kd

λ2
22 D2 �d−8

ν3
4

, (37)

where Kd = Sd/(2π)d , Sd = 2πd/2/�( 1
2 d) is the surface area

of a d-dimensional unit sphere,

Ds =
2∑

i=0

(d − 6 + 2i)D2i �2i , (38)

D = D0 + D2 �2 + D4 �4, (39)

and � is the momentum cutoff. The smallest length scale in our
lattice model is the atomic spacing, so we have � = 2 π a−1

‖ .
As for any equation combining conserved dynamics with non-
conserved noise, the parameter D0 does not renormalize to
any order in perturbation theory [58], so the scaling relation
z − 2 α = d implied by equation (35) is exact.

To investigate crossover regimes, we introduce the
dimensionless quantities

r = D0λ
2
22

ν3
4

�d−4, �2 = D2

D0
�2, �4 = D4

D0
�4,

(40)
in terms of which the RG equations (33)–(37) do not directly
depend on z and α:

dr

d�
= (4 − d)r + 3 Kd

d
r 2�, (41)

d�2

d�
= −2 �2, (42)

d�4

d�
= −4 �4 + Kdr(1 + �2 + �4)

2, (43)

with � = d − 6 + (d − 4) �2 + (d − 2) �4.
Equations (41)–(43) are the basis of our multiscale

analysis of random deposition and activated nearest-neighbor
hopping. There are several aspects of their derivation and
applications that merit discussion. As equation (41) makes
clear, the upper critical dimension of this theory dc = 4. Thus,
the loop expansion used to derive equations (33)–(37) is a
perturbation expansion in ε = 4 − d , where d is the substrate
dimension. For real epitaxial surfaces, d = 2, i.e. ε = 2,
so it is not immediately apparent that our one-loop equations
are appropriate for describing the morphological evolution
of such systems [60]. A similar objection, but motivated
by different considerations, was raised by Janssen [61], who

found, however, that two-loop corrections are small enough to
be unresolvable in experiments or simulations. Katzav [62]
has even suggested that there are no higher loop corrections
for such models. Our comparisons between RG trajectories
calculated from equations (41)–(43) and KMC simulations
provide additional evidence that corrections to the one-
loop calculation are small and do not substantially alter the
qualitative behavior of the solutions.

3.3. Fixed points

The fixed points of the RG equations (41)–(43) are
straightforward to determine in the usual manner by solving
the three equations dr/d� = 0, d�2/d� = 0, and d�4/d� = 0
with d = 2. There are three solutions. The MH fixed point,

r∗ = 0, �∗
2 = 0, �∗

4 = 0, (44)

is located at the origin, and there are two fixed points
corresponding to the VLDS equation:

r∗ = 2π

3
, �∗

2 = 0, �∗
4 = 5 ± 2

√
6, (45)

which differ only in the value of �∗
4 . We refer to the fixed point

with �∗
4 = 5 − 2

√
6 as VLDS−, and that with �∗

4 = 5 + 2
√

6
as VLDS+. Linearization around these fixed points shows that
MH and VLDS+ are unstable, while VLDS− is stable. Thus,
the RG flow in the (r, �2, �4) subspace is always directed
toward the VLDS− fixed point.

3.4. Renormalization-group trajectories

Figure 1(a) shows the RG trajectories for d = 2 with the
growth conditions in [63]. The VLDS equation is approached
asymptotically irrespective of the temperature, as noted above.
At T = 550 and 575 K the initial surface morphology is
dominated by the competition between the MH fixed point and
random deposition, which is in agreement with the simulations
in [63]. As the temperature is increased surface diffusion
becomes more active and the initial conditions shift towards
cMH behavior, described by equations (18) and (21). For
T ∼ 600–650 K we find that the initial surface morphology is
described by the MH equation (18), but with noise covariance

〈ξ(x1, τ1)ξ(x2, τ2)〉 = 2
(
D0 − D2∇2

)
δ2(x1 − x2)δ(τ1 − τ2)

(46)
for the first few monolayers deposited. However, the cMH
equation implies that β = 0 and standard dynamic scaling
breaks down [41]. In this temperature range the initial behavior
is a complex combination of fundamentally different physical
mechanisms and the conventional analysis of simulation data
becomes insufficient. Simulations for T = 600 K in [63]
nevertheless show clear scaling behavior consistent with the
VLDS equation even for early times. The corresponding RG
trajectory in figure 1(a), on the other hand, suggests that this is
merely a coincidence arising from the competing influences of
MH and cMH behavior.

Figure 1(b) shows RG trajectories for the parameters
in [64], also for d = 2. The simulations in [64] show a steeper
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Figure 1. RG trajectories obtained from equations (41)–(43) with the initial conditions in equations (25)–(32) for d = 2 with
ν0 = 5 × 1012 s−1, EN = 0.24 eV, and (a) ES = 1.3 eV, τ0 = 1 s [63], and (b) ES = 1.58 eV, τ0 = 2 s [64]. The black points denote initial
conditions for the indicated temperatures, and the RG flow is always directed towards the VLDS fixed point.

gradient for T = 670 K at early times, which is at least in
qualitative agreement with the initial dominance of the MH
fixed point suggested by figure 1(b). For T = 700 K, on
the other hand, simulations reveal a slightly smaller gradient
in the initial transient regime [64] which, as in figure 1(a)
for T = 600 K, suggests an incipient influence of the cMH
equation for which the dynamic scaling is not valid in d = 2.
For even higher temperatures the value for β obtained from
simulations decreases further and clear scaling behavior is no
longer obtained [64], consistent with the growing influence
of the cMH equation on the initial dynamics predicted by
figure 1(b).

The crossovers in figure 1 illustrate the inherent difficulties
encountered [65–69] when attempting to describe growth
morphologies observed in experiments on the basis of
postulated continuum equations. Even if there is reason
to expect that the morphological evolution of a system is
described by the VLDS equation, our and previous [40] RG
analyses show that this is only an asymptotic fixed point.
Transient regimes, where experiments are most often carried
out, are described by the MH equation.

4. Early stages of growth with a continuum equation

The lattice Langevin equation (5) provides the same level
of description as KMC simulations [27], while the method
used to obtain the regularized equation (25) provides a way
of smoothing the discrete atomistic transition rules. In this
section we investigate the extent to which equation (25)
can be used in the earliest stages of growth to describe
the submonolayer regime. There are several benefits of
having a continuum description of submonolayer growth. The
distribution of island sizes prior to any significant coalescence
exhibits scaling [51–53], with the form of the scaling
function providing information about the island formation
kinetics. KMC simulations are capable of accounting for
the experimental results [51–53], but analytic discussions
of scaling have been confined to rate equations [70, 71].
Within the rate equation framework, the complete form of the
scaling function requires expressions for ‘capture numbers’,
quantities that describe the ability of an island to capture

migrating adatoms. But, capture numbers are not easily
accessible because they reflect the local spatial environment of
an island [72]. Thus, an alternative continuum representation
of submonolayer growth that is based on transition rates and
implicitly incorporates the local environment of islands has
distinct conceptual and computational advantages.

The regularized equation (25) describes the evolution
of continuous heights as a function of continuous time and
continuous lateral position. However, the morphology during
submonolayer growth is composed of discrete islands with a
height of a single vertical lattice spacing. Thus, this regime
is characterized by non-linearities, which are responsible for
nucleation and growth, and by lattice effects, which pin the
island heights to increments of a⊥. Accordingly, we proceed
by augmenting equation (25) as follows:

∂u

∂τ
= −∇2

[
|ν4|∇2u+λ22(∇u)2−Q sin

(
2πu

a⊥
+2π Fτ

a⊥

)]
+ξ,

(47)
with

〈ξ(x1, τ1)ξ(x2, τ2)〉 = −2D2∇2δ(x1 − x2)δ(τ1 − τ2). (48)

The sine term accounts for vertical lattice effects by favoring
integer multiples of the vertical lattice spacing [73]. The flux
term in the argument results from the usual transformation
to eliminate the additive flux on the right-hand side of this
equation. Note the absence of a flux contribution to the noise.
This is in accord both with figure 1 when surface diffusion is
active, and with previous work [74] that showed that diffusion
noise dominates over deposition noise in the early stages of
growth under typical growth conditions.

Figure 2 shows the surface morphology and the
corresponding contour plot obtained from the numerical
integration of equations (47) and (48) at 0.3 ML. The effect
of the lattice pinning term is clearly seen from the fact that,
despite the continuum character of the equation, there are
discernible monolayer height islands. At very low coverage,
the surface morphology is dominated by small noisy structures,
while at higher coverages, well defined islands appear, as
shown in figure 2. Additional deposition results in the periodic
completion of layers followed by the nucleation of the next
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Figure 2. (a) Surface and (b) contour plots of the morphology produced from the numerical integration of equations (47) and (48) at 0.3 ML.
The model parameters were ES = 1.5 eV, EN = 0.3 eV, and F = 0.0.1 ML s−1, yielding D/F ∼ 105. In (b), the blue contours correspond to
the substrate (h < 0) and the red contours to the islands (h > 0).

layer. In fact, the next layer is initiated prior to the completion
of the preceding layer, as is also observed in KMC simulations.
The distribution of island sizes shows a qualitative similarity
to that obtained with KMC simulation under similar growth
conditions and model parameters. A detailed analysis of
equations (47) and (48) will appear elsewhere, but we can
already see that this model provides a basis for extending the
continuum description of fluctuating interfaces to include the
prevalent lattice effects in the early stages of growth.

5. Summary and discussion

We have described a procedure for transforming transition
rules defined on a lattice into stochastic differential equations
that describe the interface fluctuations over any given range
of length scales and timescales. As the fast short-wavelength
fluctuations are subsumed into an effective equation for
the remaining fluctuations, the description of even complex
atomistic processes reduces to a low-order stochastic partial
differential equation. The machinery for carrying out this
procedure is that of the renormalization group and many of
the concepts familiar from applications to equilibrium phase
transitions and near-equilibrium dynamics find an expression
in the description of driven fluctuating interfaces. For example,
the phenomenon of crossover, whereby a RG trajectory
passes near one or more fixed points before proceeding to
the asymptotically stable fixed point, is seen as equations
that describe the transient behavior of a system that differ
qualitatively from the equations that correspond to the stable
fixed point.

Our methodology has been illustrated with an application
to a basic model of MBE [57] that includes random deposition
and surface diffusion by nearest-neighbor hopping. The
system of RG equations (33)–(37), together with the initial
values for the coefficients in equations (25)–(32), provide
a continuum description of this model for any length
scales and timescales—from the atomistic resolution of the
original transition rules to the macroscopic realm. The
parameters in these coarse-grained continuum equations are
determined by the underlying lattice model and, hence, a

direct comparison between continuum equations and growth
experiments becomes feasible. In particular, our procedure can
be used to predict transient surface morphologies as a function
of the growth conditions, which is important for modeling
device fabrication [67, 68]. Equations (5), (15), and (33)–(37)
therefore establish a first-principles multiscale description our
model for MBE. The results obtained using this methodology
for this and other models are found to be in agreement with all
available computer simulations.

Finally, we have described a way of extending our
regularized models to include lattice effects in the early
stages of growth. The addition of a lattice pinning term
to the continuum equation produces morphologies that are
in qualitative agreement with those obtained from KMC
simulations. Further work will be required to more firmly
establish the quantitative effectiveness of our procedure
throughout the early stages of growth, but our preliminary
results already suggest that even highly resolved processes
such as island nucleation and growth are amenable to a
continuum description.

Taken together, the results presented here and elsewhere
indicate that a wide range of surface processes can be ac-
curately described by low-order stochastic partial differential
equations whose coefficients embody their atomistic charac-
teristics. In this respect, we have applied Occam’s razor to
systematically express these processes in their simplest form.

Acknowledgments

This work was supported at Imperial College London by funds
from the UK Engineering and Physical Sciences Research
Council and the European Commission Sixth Framework
Programme as part of the European Science Foundation
EUROCORES Programme on Self-Organized Nanostructures
(SONS). CAH is supported at MIT by an Erwin Schrödinger
fellowship of the Austrian Science Fund. DDV is grateful
to the University of Aix-Marseille for their hospitality during
September 2007, when some of the work described here was
initiated.

8



J. Phys.: Condens. Matter 20 (2008) 304203 C A Haselwandter et al

References

[1] Zangwill A 1988 Physics at Surfaces (Cambridge: Cambridge
University Press)

[2] Somorjai G 1994 Introduction to Surface Chemistry and
Catalysis (New York: Wiley Interscience)

[3] Kasemo B 2002 Biological surface science Surf. Sci.
500 656–77

[4] Landau L D and Lifschitz E M 1981 Theory of Elasticity
2nd edn (Oxford: Pergamon)

[5] Landau L D and Lifschitz E M 1987 Fluid Mechanics 2nd edn
(Oxford: Pergamon)

[6] Kadau K, Germann T C and Lomdahl P S 2006 Molecular
dynamics comes of age: 320 billion atom simulation on
BlueGene/L Int. J. Mod. Phys. C 17 1755–61

[7] Brodie I and Muray J J 1982 The Physics of Microfabrication
(New York: Plenum)
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